

SAULT COLLEGE OF APPLIED ARTS & TECHNOLOGY SAULT STE. MARIE, ONTARIO

COURSE OUTLINE

Course Title	MATHEMATICS
Code No.:	MTH 554-4
program:	MECHANCIAL TECHNOLOGY
	III (3 HRS,./WEEK)
Semester:	JULY, 1988
Date:	W. MACQUARRIE
Author	

New:

Revision:

Х

cIvi^Y ^/gf^

APPROVED

.

Chairperson

Date

CALENDAR DESCRIPTION

MATHEMATICS

MTH 554-4

COURSE NAME

COURSE NUMBER

PHILOSOPHY/GOALS;

In this course, the student is introduced to the subject of Calculus and will cover functions, limits, derivatives, how to find and use derivatives in a variety of engineering problems (maxima/minima, related rates, etc.) and also, an introduction to indefinite and definite integrals, how to work with them and use them to solve a variety of engineering problems (ares under/between, curves, volumes of solids of revolution, and motion problems).

METHOD OF ASSESSMENT (GRADING METHOD):

1. Three to four tests per semester.

- 2. Several short (possibly unannounced) quizzes per semester.
- 3. Final grade is a weighted average of the above.
- 4. See also the Mathematics Department's annual publication, To the <u>Mathematics Student</u> for further details, numerical percent equivalents for letter grades, etc.
- 5. Depending on individual circumstances, a failing grade at the end of a semester may be upgraded by writing a two-hour comprehensive examination.

TEXTBOOK(S):

Cummings, Benjamin, BASIC TECHNICAL MATHEMATICS WITH CALCULUS, J.J. Washington,

MTH544-4.,.MECHANICAL.,.3

PERIODS TOPIC DESCRIPTION

REFERENCE

	<u>Introduction</u> to <u>Differential Calculus</u> Functional notation Limiting value of a function Differentiation-delta method Practical applications- rectiline motion	Washington Pgs 52-58 646-670
12	Differentiation by Rule Differentiation formulas Composite function and the chain rule Implicit differentiation Electrical applications	671-678 687-993 702-707
10	Successive differentiation <u>Practical Application of Differentiation</u> Gradients Tangents to curves Maxima and minima Related rate problems <u>Differential and Integral</u>	694-698 711-718 721-728 707-711
	Differential formulas Applications of differential Integration as anti-differentiation Applications of indefinite integration	731-735 736-744 763-770
	Definite Integration Areas under a curve Fundamental theorem of integral calculus Computations with definite integrals Application to areas, volume/ motion electrical problems	744-753 770-775 775-780

i